Find K largest elements in array using Max Heap.
Given a unsorted array, Find k largest element in array.
Heap Sort Algorithm
Lets understand what is the input and the expected output.
Algorithm (We will use Max Heap for getting K largest element)
In the previous post we saw Find K largest elements in array using Min Heap, In this post we will see how to get K largest elements using Max heap.
How Heapify works : Heap Sort Algorithm
[5, 10]
5
- First we will build a heap which requires O(n) time for building the heap.
- Once the heap is build, largest element would be at the root or at arr[0].
- Print the max at arr[0], swap max at arr[0] with the last element of heap.
- Heapify the tree K times to get max K elements.
There are several ways to get the K largest elements, Here I particularly want to show Max Heap approach.
Find K Largest element in array using Max Heap
package com.javabypatel.heap; /* Input: array = [4, 10, 3, 5, 1] K = 2 Output: 10 5 Input: array = [4, 10, 3, 5, 1] K = 5 Output: 10 5 4 3 1 Input: array = [4, 10, 3, 5, 1] K = 0 Output: */ public class FindMaxKElementInArray { public static void main(String[] args) { int[] array = new int[] {4, 10, 3, 5, 1}; new FindMaxKElementInArray().printMaxKElements(array, 5); } public void printMaxKElements(int data[], int k) { if(k > data.length) { System.out.println("Invalid k size"); return; } /* {4, 10, 3, 5, 1} 4 / \ 10 3 / \ 5 1 */ //This step is called building a Heap for (int i = data.length/2 -1; i >= 0; i--) { maxHeapify(i, data, data.length); } //Once the heap is build by above step, we replace the max element at arr[0](root element) to last index of array //and decrease the size by 1 in next iteration as highest element is already at its place. //Remember in each iteration we would have highest element at arr[0] and we will swap it to last element of heap size. //so for finding the Kth largest element, we will only need to swap k times. for (int i = data.length - 1; i >= data.length - k; i--) { System.out.print(data[0] + " "); //Swap max element at root(arr[0] to last element) int temp = data[0]; data[0] = data[i]; data[i] = temp; //swapping would have disturbed the heap property, //so calling max heapify for index 0 on the reduced heap size. //if we pass i in place of size should also work as that also represents the size maxHeapify(0, data, i); } } private int leftChild(int i) { return 2 * i + 1; } private int rightChild(int i) { return 2 * i + 2; } private void maxHeapify(int i, int[] data, int size) { int largestElementIndex = i; int leftChildIndex = leftChild(i); if (leftChildIndex < size && data[leftChildIndex] > data[largestElementIndex]) { largestElementIndex = leftChildIndex; } int rightChildIndex = rightChild(i); if (rightChildIndex < size && data[rightChildIndex] > data[largestElementIndex]) { largestElementIndex = rightChildIndex; } if (largestElementIndex != i) { int swap = data[i]; data[i] = data[largestElementIndex]; data[largestElementIndex] = swap; // Recursively heapify for the affected node maxHeapify(largestElementIndex, data, size); } } }
Find K Largest element in array using PriorityQueue
package com.javabypatel.heap; import java.util.PriorityQueue; public class FindMaxKElementInArray { public static void main(String[] args) { int[] array = new int[] {4, 10, 3, 5, 1}; System.out.println(new FindMaxKElementInArray().findKthLargest(array, 2)); } public int findKthLargest(int[] nums, int k) { PriorityQueue<Integer> q = new PriorityQueue<Integer>(k); for (int i : nums) { q.offer(i); if (q.size() > k) { q.poll(); } } System.out.println(q); //To print all k Largest elements return q.peek(); //To print kth Largest element } }Output:
[5, 10]
5
You may also like to see
Sort Linked list using Merge sort
Bubble Sort
Heap Sort
Selection Sort
Insertion Sort
How ConcurrentHashMap works and ConcurrentHashMap interview questions
How Much Water Can A Bar Graph with different heights can Hold
Interview Questions-Answer Bank
Enjoy !!!!
If you find any issue in post or face any error while implementing, Please comment.
No comments:
Post a Comment